Skip Navigation Links.

Search for publications:

Limit search to the fields

ECN publication
Status of pseudo fission product cross sections for fast reactors: results of the SWG17, International Working Party on Evaluation Coordination of the Nuclear Science Committee, NEA-OECD
Published by: Publication date:
ECN report number: Document type:
ECN-R--98-014 Other
Number of pages: Full text:
95 Download PDF  

Within the framework of the SWG17 benchmark organized by a Working Partyof the Nuclear Science Committee of the Nuclear Energy Agency (NEA), a comparison of lumped or pseudo fission product cross sections for fast reactors has been made. Four institutions participated with data libraries based on the JEF2.2, EAF-4.2, BROND-2, FONDL-2.1, ADL-3 and JENDL-3.2 evaluated nuclear data files. Several parameters have been compared with each other: the one-group cross sections and reactivity worths of the lumped nuclide for several partial absorption and scattering cross sections, and the one-group cross sections of the individual fission products. Also graphs of the multi-group cross sections of the lumped nuclide have been compared, as well as graphs of capture cross sections for 27 nuclides. From two contributions based on JEF2.2, it can be concluded that the data processing influences the capture cross section by about 1% and the inelastic scattering cross section by 2%. The differences between the lumped cross sections of the different data libraries are surprisingly small: maximum 6% for capture and 9% for the inelastic scattering. Similar results are obtained for the reactivity effects. Since the reactivity worth of the lumped nuclide is dominated by the capture reaction, the maximum spread in the total reactivity worth is still only 5.3%. There is a systematic difference between total, elastic and capture cross sections of JENDL-3.2 and JEF2.2 of the same order of magnitude. Possible reasons for this discrepancy have been indicated. The one-group capture and inelastic scattering cross sections of most of the important individual fission products differ by less than 10% (root mean square values). Larger differences are observed for unstable nuclides where there is a lack of experimental data. For the (n,2n) group cross sections, which are rather sensitive to the weighting spectrum in the fast energy range, these differences are several tens of percents. The final conclusion is that the present status of lumped nuclide cross sections for fast reactors is satisfactory, although improvements are possible as indicated in this report. 36 refs.

Back to List