Publications

Skip Navigation Links.
Recently Published
Collapse per documenttypeper documenttype
Expand per Unitper Unit
Expand per Clusterper Cluster

Search for publications:


Limit search to the fields

ECN publication
Title:
Isotherm model for high-temperature, high-pressure adsorption of CO2 and H2O on K-promoted hydrotalcite
 
Author(s):
 
Published by: Publication date:
ECN Biomass & Energy Efficiency 11-11-2014
 
ECN report number: Document type:
ECN-W--14-003 Article (scientific)
 
Number of pages:
11  

Published in: Chemical Engineering (), , 2014, Vol.248, p.406-414.

Abstract:
Sorption-enhanced water-gas shift (SEWGS) combines the water–gas shift reaction with in situ adsorption of CO2 on potassium-promoted hydrotalcite (K-HTC) and thereby allows production of hot, high pressure H2 from syngas in a single process. SEWGS is a cyclic process, that comprises high pressure adsorption and rinse, pressure equalisation, and low pressure purge. In order to design the SEWGS process, the equilibria and kinetics of adsorption must b eknown for the entire pressure range. Here, amulticomponent adsorptionisothermis presented for CO2 and H2O on K-HTC at 400 _C and 0.5–24 bar partial pressure, that has been derived from integrated experimentally determined breakthrough curves with special attention being given to the high pressure interaction. The experimental results can be well described by assuming that the isotherm consists of a low partial pressure surface adsorption part and a high partial pressure nanopore adsorption part. Surface adsorption occurs at specific and different sites for CO2 or H2O. In contrast, the nanopore adsorption mechanism is competitive and explains the interaction observed in the capacity data at partial pressures over 5 bar. Based on the characteristics of the sorbent particles, a linear driving force relation has been derived for sorption kinetics. Adsorption isotherm and linear driving force kinetics have been included in a reactor model. Model predictions are in agreement with breakthrough as well as regeneration experiments.


Back to List