Title:
|
Impact of iron and molybdenum in mono and multicrystalline float-zon silicon solar cells
|
|
Author(s):
|
Coletti, G.; Geerligs, L.J.; Manshanden, P.; Swanson, C.; Riepe, S.; Warta, W.; Arumughan, J.; Kopecek, R.
|
|
Published by:
|
Publication date:
|
ECN
Solar Energy
|
31-8-2007
|
|
ECN report number:
|
Document type:
|
ECN-M--07-091
|
Conference Paper
|
|
Number of pages:
|
Full text:
|
6
|
Download PDF
|
Presented at: Gadest 2007 Conference, Erice, Italy, 14-19 oktober 2007.
Abstract:
This paper investigates the impact of iron (Fe) and molybdenum (Mo) when they are introduced in the feedstock for mono- and multicrystalline Float-Zone (FZ) silicon (Si) growth. Neutron Activation Analysis shows that the segregation coefficient is in agreement with literature values. Lifetime maps on monocrystalline wafers show a uniform lifetime which decreases with the increase of contamination levels. Multicrystalline wafers show low lifetime areas, corresponding to grain boundaries and highly dislocated areas, which are independent from the contamination levels. Intra grain areas have a higher lifetime which changes with the contamination levels. The solar cells show a reduced diffusion length in multicrystalline uncontaminated cells compare to the monocrystalline uncontaminated. In multicrystalline cells the lowest level of Fe introduced (1012 atm/cm3) has hardly any influence, whereas in the Mo-contaminated cells the impact is visible from the lowest level (1011 atm/cm3). In monocrystalline cells the diffusion length is reduced already at the lowest contamination level of Fe.
Back to List