Publications

Skip Navigation Links.
Recently Published
Collapse per documenttypeper documenttype
Expand per Unitper Unit
Expand per Clusterper Cluster

Search for publications:


Limit search to the fields

ECN publication
Title:
Impact of iron and molybdenum in mono and multicrystalline float-zon silicon solar cells
 
Author(s):
Coletti, G.; Geerligs, L.J.; Manshanden, P.; Swanson, C.; Riepe, S.; Warta, W.; Arumughan, J.; Kopecek, R.
 
Published by: Publication date:
ECN Solar Energy 31-8-2007
 
ECN report number: Document type:
ECN-M--07-091 Conference Paper
 
Number of pages: Full text:
6 Download PDF  

Presented at: Gadest 2007 Conference, Erice, Italy, 14-19 oktober 2007.

Abstract:
This paper investigates the impact of iron (Fe) and molybdenum (Mo) when they are introduced in the feedstock for mono- and multicrystalline Float-Zone (FZ) silicon (Si) growth. Neutron Activation Analysis shows that the segregation coefficient is in agreement with literature values. Lifetime maps on monocrystalline wafers show a uniform lifetime which decreases with the increase of contamination levels. Multicrystalline wafers show low lifetime areas, corresponding to grain boundaries and highly dislocated areas, which are independent from the contamination levels. Intra grain areas have a higher lifetime which changes with the contamination levels. The solar cells show a reduced diffusion length in multicrystalline uncontaminated cells compare to the monocrystalline uncontaminated. In multicrystalline cells the lowest level of Fe introduced (1012 atm/cm3) has hardly any influence, whereas in the Mo-contaminated cells the impact is visible from the lowest level (1011 atm/cm3). In monocrystalline cells the diffusion length is reduced already at the lowest contamination level of Fe.


Back to List