Publications

Skip Navigation Links.
Recently Published
Collapse per documenttypeper documenttype
Expand per Unitper Unit
Expand per Clusterper Cluster

Search for publications:


Limit search to the fields

ECN publication
Title:
Interface properties of a-SiNx:H/Si to improve surface passivation
 
Author(s):
Lamers, M.W.P.E.; Butler, K.T.; Harding, J.H.; Weeber, A.W.
 
Published by: Publication date:
ECN Solar Energy 5-7-2012
 
ECN report number: Document type:
ECN-W--12-044 Article (scientific)
 
Number of pages:
5  

Published in: Solar Energy Materials & Solar Cells (Elsevier), , 2012, Vol.106, p.17-21.

Abstract:
Nitridation is the process in which, during the initial growth of a-SiNx:H layers on Si surfaces, nitrogen is incorporated into the Si lattice near its surface. We show that this nitridation process affects the density of interface states (Dit) and ?xed charges (Qf) at the interface. These parameters determine the effective surface passivation quality of the layers. The nitridation can be tuned independently of the growth of a-SiNx:H layers by using a plasma treatment prior to actual a-SiNx:H layer deposition. It is shown that Qf can be varied from 2 x 1012 to 15 x 1012 cm-2 without changing the a-SiNx:H deposition process. It is demonstrated that in our case and processing window, Qf is the determining factor in surface passivation quality in the range of 2 x 1012 to 8 x 1012 cm - 2. For higher values of Qf, Dit has increased signi?cantly and has become dominant thereby reducing the passivation quality. It is shown that the passivation can be controlled independently of the a-SiNx:H deposition process. In completed solar cells the effect of the controlled Qf and Dit is studied. On n-type solar cells, due to increased depletion, increases in Qf and Dit resulted in a drop in open-circuit voltage, Voc, of over 20 mV. On p-type solar cells, where the Qf results in accumulation, the effect was negligible.


Back to List